
Semantic Web
modellare e condividere per innovare
E. Della Valle, I. Celino e D. Cerizza

Realizing a
Semantic Web Application

Emanuele Della Valle

http://www.cefriel.it
http://swa.cefriel.it

emanuele.dellavalle@cefriel.it
http://emanueledellavalle.org

11th Int. Conf. on Business Information Systems BIS 2008
Innsbruck, Austria, 7 May 2008

Center of Excellence For Research, Innovation, Education and
industrial Lab partnership - Politecnico di Milano

X-1

1
Goal

We will develop together an application of the Semantic
Web we named Music Event Explorer o simply meex

We will challenge the Semantic Web technologies in
realizing a new service for Web users

Using
Transforming and
Combining existing data

X-1

2
Ingredients

OWL as modelling language for the data sources;

RDF as unified data model;

GRDDL as a standard approach to translate in RDF the
data stored in XML data sources;

D2RQ as tool to translate in RDF the data stored in
relational data sources;

Jena as application framework to merge the various
data in a single RDF model and manipulate it;

SPARQL as standard query language to access RDF
data;

A RDF storage to guarantee persistency

A OWL reasoner to infer new knowledge;

Exhibit as user interface.

X-1

3
Approach

In order to realize meex
1. We start from the user need
2. We derive user requirements
3. We develop the ontologies and the software

components

While developing we will explain the use of Semantic
Web technologies and tools.

A demonstrative installation of the application, together
with the source code, is available at

http://swa.cefriel.it/meex

X-1

4

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1

5

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1

6
Users’ needs

Imagine the users need to explore music events related
to a given music style

An event is a concert, a show or a workshop at which
one or more artist participate.
An artist is either a single musician or a band.

For instance, if a user is interest in Celtic music meex
finds the artists that play Celtic Music
searches for events of those artists
allows the users to explore the events related to each
artist as a list, on a time line and on a map

X-1

7

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1

8
Content requirements analysis

Given we are developing a Semantic Web application is
cruscial we reuse data already available on the Web

EVDB - http://eventuful.com
MusicBrainz - http://musicbrainz.org
MusicMoz - http://musicmoz.org

X-1

9
EVDB

EVDB is a Web 2.0 website that makes available
information about event all around the world

For each event it knows
The start data
The end data
The place in terms of address and geographic
coordinates

EVDB offers a Web API in the form of a REST service
see http://api.evdb.com

X-1

10
MusicBrainz

MusicBrainz
is a Web 2.0 website that gathered a large amount of
information about music
offers information about

artists and bands
songs, albums and tracks
relations among artists and bands

The data of MusicBrainz are available as a PostgreSQL
dump

see http://musicbrainz.org/doc/DatabaseDownload

X-1

11
MusicMoz

MusicMoz
is another Web 2.0 website dedicated to music
offers information about

artists and bands including their nationality
music styles and their taxonomic relationships
the styles each artist or band plays

reuses MusicBrainz identifier for artists and bands

The data of MusicMoz are available as large XML files
see http://musicmoz.org/xml/

X-1

12
meex needs to merge this data

meex in order to be able to manipulate all this data at
the same time needs to merge the data of the three
data sources.

The artists and bands information from MusicBrainz
should be linked to

the music styles they play from MusicMoz
the events related to them from EVDB

X-1

13
Data Licences

The data of all three data sources are freely usable, we
just need to make sure that the logos of the three
applications appears on each page of meex

EVDB requests also to include a link to the permalink of
the event on EVDB website

MusicBrainz request also that derived data are made
available in Creative Commons.

Read out more here
EVDB - http://api.eventful.com/terms
MusicMoz - http://musicmoz.org/xml/license.html
MusicBrainz -
http://musicbrainz.org/doc/DatabaseDownload

X-1

14
Application requirements analysis (1)

In this step (namely R.3) we should elicit
functional requirements of the application

as grouping and filtering data
non-functional requirements of the application

as performance and scalability w.r.t. number of
users

However this is just a tutorial, therefore we concentrate
on functional requirements, leaving non-functional
requirements underspecified

X-1

15
Application requirements analysis (2)

Meex
must enable a user to explore data in the form of

a list
a chronological graphic
a geographic map

for each event must show
name
begin and end date
place

for each artist must show
name
nationality
music styles he/she plays
related artists

must allow users to
filter and rank results

X-1

16
Model the Application Ontology

As first design step (namely D.1) we model the
application ontology

meex must manage information related to
artists
events at which the artists participate and
music styles the artists play

X-1

17

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V
.1

 V
al

id
at

io
n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1

18
Modeling Performer in OWL

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix meex: <http://swa.cefriel.it/meex#> .

meex:Performer a owl:Class ;
rdfs:label "Performer" .

meex:fromCountry a owl:DatatypeProperty ;
rdfs:domain meex:Performer ;
rdfs:range
<http://www.w3.org/2001/XMLSchema#string> .

meex:relatedPerformer a owl:ObjectProperty ;
rdfs:domain meex:Performer ;
rdfs:range meex:Performer .

[more to follow]

Meex.n3

X-1

19
Modeling Style in OWL

[follows]

meex:Style a owl:Class .
rdfs:label "Music Style" .

meex:performsStyle a owl:ObjectProperty ;
rdfs:domain meex:Performer ;
rdfs:range meex:Style .

[more to follow]

Meex.n3

X-1

20
Modeling Event in OWL

[follows]

meex:Event a owl:Class ;
rdfs:label "Event" .

meex:performsEvent a owl:ObjectProperty ;
rdfs:domain meex:Performer ;
rdfs:range meex:Event .

meex:hasWhen a owl:ObjectProperty ;
rdfs:domain meex:Event ;
rdfs:range gd:When .

meex:hasWhere a owl:ObjectProperty ;
rdfs:domain meex:Event ;
rdfs:range gd:Where

Meex.n3

For each event we should model begin and end date together
with the place, but an XML schema defined by Google exists;
thus we decide to reuse it by merging it

X-1

21
Modeling When in OWL

[namespace declaration]

gd:When a owl:Class;
rdfs:label "Time" .

gd:startTime a owl:DatatypeProperty ;
rdfs:domain gd:When ;
rdfs:range

<http://www.w3.org/2001/XMLSchema#string> .

gd:endTime a owl:DatatypeProperty ;
rdfs:domain gd:When ;
rdfs:range

<http://www.w3.org/2001/XMLSchema#string> .

[more to follow]
GoogleSchema.n3

X-1

22
Modeling Where in OWL

gd:Where a owl:Class; rdfs:label "Location" .

gd:postalAddress a owl:DatatypeProperty ;
rdfs:domain gd:Where ;
rdfs:range
<http://www.w3.org/2001/XMLSchema#string>.

gd:hasGeoPt a owl:ObjectProperty ;
rdfs:domain gd:Where ;
rdfs:range gd:GeoPt .

gd:GeoPt a owl:Class ; rdfs:label "Geo-referenced Point" .

gd:lat a owl:DatatypeProperty ;
rdfs:domain gd:GeoPt ;
rdfs:range <http://www.w3.org/2001/XMLSchema#string>.

gd:lon a owl:DatatypeProperty ;
rdfs:domain gd:GeoPt ;
rdfs:range <http://www.w3.org/2001/XMLSchema#string>.

gd:label rdfs:subPropertyOf rdfs:label .
GoogleSchema.n3

X-1

23
Model the content ontology

We keep following our approach and we model the
content ontology (step P.2)

The content ontology models in OWL the data of the
three data sources used by meex

In the mean time we also model the sample contents
(step P.3) that we will use to test meex during its
implementation (see test-first method from Agile
manifesto)

X-1

24

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V
.1

 V
al

id
at

io
n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1

25
Modeling MusicBrainz schema in OWL

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix mb: <http://musicbrainz.org/> .

mb:Artist a owl:Class ;
rdfs:label "MusicBrainz Artist and Band" .

mb:artist_relation a owl:ObjectProperty ;
rdfs:domain mb:Artist ;
rdfs:range mb:Artist .

MusicBrainz.n3

artist artist_relation

id gid

artist
ref

X-1

26
Sample data for MusicBrainz in OWL

mb:artist/b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d.html
a mb:Artist ;
rdfs:label "The Beatles" ;
mb:related_artist

mb:artist/ebfc1398-8d96-47e3-82c3-f782abcdb13d.html ,
mb:artist/618b6900-0618-4f1e-b835-bccb17f84294.html .

mb:artist/ebfc1398-8d96-47e3-82c3-f782abcdb13d.html
a mb:Artist ;
rdfs:label "The Beach Boys" .

mb:artist/618b6900-0618-4f1e-b835-bccb17f84294.html
a mb:Artist ;
rdfs:label "Eric Clapton" .

SampleInstance-MusicBrainz.n3
Please note that we choose to build the URI using the ID
that MusicBrainz uses to identify the artists. This allows
for easier reuse of meex data in other applications

X-1

27
MusicMoz schema

category from

* resource

style

1

*

name
link

name

string

type

X-1

28
Modeling MusicMoz schema in OWL

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix mm: <http://musicmoz.org/> .
@prefix mb: <http://musicbrainz.org/> .
mm:from a owl:DatatypeProperty ;

rdfs:domain mb:Artist ;
rdfs:range <http://www.w3.org/2001/XMLSchema#string>.

mm:Style a owl:Class ;
rdfs:label "MusicMoz Music Style" .

mm:hasStyle a owl:ObjectProperty ;
rdfs:domain mb:Artist ;
rdfs:range mm:Style .

MusicMoz.n3

X-1

29
Sample data for MusicMoz in OWL

mb:artist/b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d.html
mm:from "England" ;
mm:hasStyle mm:style/British-Invasion ,

mm:style/Rock ,
mm:style/Skiffle .

mm:style/British-Invasion a mm:Style ;
rdfs:label "British Invasion" .

SampleInstance-MusicMoz.n3

Please note that also in this case we use the ID derived
from MusicBrainz

X-1

30
Modeling EVDB schema in OWL

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix evdb: <http://eventful.com/> .
@prefix gd: <http://schemas.google.com/g/2005> .
evdb:Event a owl:Class ;

rdfs:label "Eventful Event" .
evdb:hasWhen a owl:ObjectProperty ;

rdfs:domain evdb:Event ;
rdfs:range gd:When .

evdb:hasWhere a owl:ObjectProperty ;
rdfs:domain evdb:Event ;
rdfs:range gd:Where .

EVDB.n3

Please note that we reuse the concepts When and Where we
model in the application ontology by merging Google
schema (see GoogleSchema.n3).

X-1

31
Sample data for EVDB in OWL

evdb:events/E0-001-008121669-0@2008022719 a evdb:Event ;
gd:label "Tell Me Why: A Beatles Commentary" .
evdb:hasWhen evdb:events/E0-001-008121669-0@2008022719_When;
evdb:hasWhere evdb:events/E0-001-008121669-0@2008022719_Where.

evdb:events/E0-001-008121669-0@2008022719_When
gd:startTime "2008-02-28" ;
gd:endTime "2008-02-28" .

evdb:events/E0-001-008121669-0@2008022719_Where
gd:hasGeoPt evdb:events/E0-001-008121669-0@2008022719_GeoPt ;
gd:label "The Wilmington Memorial Library" ;
gd:postalAddress "175 Middlesex Avenue, Wilmington, USA" .

evdb:events/E0-001-008121669-0@2008022719_GeoPt
gd:lat "42.556943" ;
gd:lon "-71.165576" .

SampleInstance-EVDB.n3

X-1

32
“Application Connected by Concepts”

artists

Music
styles

events

time
places

Meex ontology

MusicBrainz

EVDB

MusicMoz

Meex

X-1

33

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1
Summary

We are done with the modeling of ontologies and sample
contents

We can now design meex (step D.4 of our approach)

In order to design meex architecture
We first design its interfaces in terms of

both graphic user interface
and connection to the three data sources

Secondly we design how it works inside in terms of
components and
execution semantics

34

X-1
meex interfaces

35

MusicBrainz
database

Adapter
Database

RDF

SPARQL
Server

EVDB
REST
service

MusicMoz
File XML

meex

User

XML

Browser
Web 3) HTML and RDF

2) RDF

GRDDL processor

EVDB
RDF

MusicMoz
RDF

XML

2) RDF

1) Music style

X-1
How we access the data

In order to get RDF data out from the three external
data source we can use different techniques

For MusicBrainz database we can use tools that
enable to query non-RDF databases as virtual RDF
graphs using a standard SPARQL endpoint
For MusicMoz XML files we can use a GRDDL
processor using the XSLT MusicMoz->RDF

For EVDB we can use a GRDDL processor applying
the XSLT EVDB->RDF to the XML file obtained using
the EVDB REST service

36

X-1
User Interface

In order to collect users’ input and to present results
back to the users, we can use Web 2.0 technologies and
develop an AJAX interface

Such AJAX interface must allow for
Inserting the music style, the resulting events will
refer to
Exploring the events found by meex
Filtering the events based on

Artists
Their nationality
The music style they play

37

X-1
Designing how meex works inside

38

Ajax Web Framework

GRDDL Processor

For each Artist

SPARQL Client

MusicBrainz
SPARQL Endpoint

HTTP REST Client

EVDB
HTTP REST service

GRDDL Processor
EVDB

RDF

MusicMoz
RDF

Linking Artists to events

RDF Merge

Estrazione e
trasformazione

Ajax Web Framework

Music style

Set of artist in RDF

Artist

SPARQL Query

Events in XML

Events in RDF

Artists and events in RDF

Artist data
in RDF

HTTP Query

Dati RDF

Artists and
events in RDF

X-1
Execution Semantics (1)

1. The user requests a music style

2. meex access the local copy of MusicMoz and using the
GRDDL processors obtains a set of artist that plays the
given music style

[more to follow]

39

X-1
Execution Semantics (2)

[follows]

3. For each artist meex :
a) uses the SPARQL client to query the MusicBrainz

SPARQL endpoint and it obtains the artist name and
his/her relationships with other artist

b) invokes the EVDB REST service, it obtains the events
that refer to the artist in XML and uses the GRDDL
processor to obtain this data in RDF

c) links the data about each artist to the data about the
events that refers to him/her

[more to follow]

40

X-1
Execution Semantics (3)

[follows]

4. When all the peaces of information about artists and
events are available in the RDF storage, meex extracts
them and serializes them in the format of the Ajax Web
framework

5. The ajax Web framework allows the user for exploring
the events found by meex

6. When the user decides to start a new exploration, meex
starts over from the beginning

41

X-1
Two important internal components

The RDF storage
must be initialized with both the application and the
content ontology
is filled in with the data meex loads from the three
data source given the music style requested by the
user

The reasoner
allows all query in meex to be express in terms of the
application ontology even if data are loaded from the
data sources using the content ontology

NOTE: the reasoner support the semantic integration of
the data loaded from the external data sources. The
meex’s programmer can ignore that multiple and
heterogeneous data sources were used to load data

42

X-1

43

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1
Implement the initial Knowledge Base (1)

We start implementing meex by setting up the initial
knowledge base (step I.1)

We need to select tools
to read and write RDF in the RDF/XML and RDF/N3
syntax
to manipulate programmatically RDF
to store RDF
to reason on OWL
to interpret SPARQL

44

X-1
Implement the initial Knowledge Base (2)

We choose Jena because
offers API

to read and write different RDF syntax
provides a programmatic environment for RDF,
RDFS and OWL, SPARQL a

guarantees RDF model persistence through several
relational database adapters
includes a rule-based inference engine which
implement OWL semantics
includes ARQ, a query engine that supports SPARQL

In order to use the RDF storage and the OWL reasoner
from Jena we need to configure them as shown in the
following slides

45

X-1
Configuring the RDF storage

1. Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

2. DBConnection con = new DBConnection(
"jdbc:derby:C:/Meex/RDFStorage;create=true",
"sa", "", "Derby");

3. Model model =
ModelFactory.createModelRDBMaker(con).
createDefaultModel();

We choose to use Derby (from Apache) as relational
database underneath the RDF storage.

With row 1 we tell Jena where to find the JDBC driver

With row 2 we define the JDBC connection

With row 3 we instantiate the object model of Jena we
will use to access and manipulate the RDF model in the
storage

46

X-1
Configuring the OWL reasoner

1. Reasoner reasoner = ReasonerRegistry.getOWLMicroReasoner();

2. model = ModelFactory.createInfModel(reasoner, model);

Jena offers numerous options to configure the internal
rule-based inference engine with different expressivity-
performance tradeoffs

We need simple reasoning features (i.e., subClassOf and
subPropertyOf transitive closure), the OWL Micro
configuration is, therefore, the most appropriate one

With row 1 we instantiate a OWL micro reasoner

With row 2 we instantiate a model with inference support
using the model previously created and the OWL micro
reasoner

47

X-1

48

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1
Implement the integrated model (1)

We move on with the implementation of meex realizing
the integrated model (step I.2)

In the integrated model we merge application and
content ontology

Our intent is to integrate semantically the
heterogeneous data coming from the external data
sources

In order to realize the integrated model we need to
define a bridge ontology using the properties

rdfs:subclassOf
rdfs:subpropertyOf

to connect classes and properties in the application
ontology to those in the content ontology

49

X-1
Implement the integrated model (2)

1. mb:Artist rdfs:subClassOf meex:Performer .

2. mb:related_artist rdfs:subPropertyOf meex:relatedPerformer.

3. mm:Style rdfs:subClassOf meex:Style .

4. mm:hasStyle rdfs:subPropertyOf meex:performsStyle .

5. mm:from rdfs:subPropertyOf meex:fromCountry .

6. evdb:Event rdfs:subClassOf meex:Event.

7. evdb:hasWhen rdfs:subPropertyOf meex:hasWhen.

8. evdb:hasWhere rdfs:subPropertyOf meex:hasWhere.

In rows 1 and 2 we connect the ontology of MusicBrainz to
the application ontology, i.e.

the classes mb:Artist and meex:Performer
the properties mb:related_artist and meex:relatedPerformer.

Likewise, in rows 3, 4 and 5, we connect the ontology of
MusicMoz to the application ontology and
in rows 6, 7 and 8 we connect the ontology of EVDB to the
application ontology

50

X-1
Implement the integrated model (3)

Thanks to this bridge ontology, when data loaded from
the external data sources are inserted in the RDF
storage (using the data source specific ontologies), the
OWL micro reasoner infers the triples that represent the
same data in the application ontology

meex can, therefore, query the RDF storage
homogeneously in the terms of application ontology
without caring of the heterogeneous formats of the three
data sources

To give an idea of the differences, in the next slide we
compare the data expressed

in MusicBrainz ontology and
in the application ontology

51

X-1
Implement the integrated model (4)

mb:artist/b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d.html
a mb:Artist ;
rdfs:label "The Beatles" ;
mb:related_artist

mb:artist/ebfc1398-8d96-47e3-82c3-f782abcdb13d.html,
mb:artist/618b6900-0618-4f1e-b835-bccb17f84294.html.

52

SampleInstance-MusicBrainz.n3

mb:artist/b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d.html
a meex:Performer ;
rdfs:label "The Beatles" ;
meex:relatedPerformer

mb:artist/ebfc1398-8d96-47e3-82c3-f782abcdb13d.html ,
mb:artist/618b6900-0618-4f1e-b835-bccb17f84294.html .

Dati-di-MusicBrainz-inferiti-usando-l-ontologia-ponte.n3

X-1
Implement the integrated model (5)

model.read("Meex.n3", "", "N3");

model.read("Google.n3", "", "N3");

model.read("MeexBindings.n3", "", "N3");

model.read("MusicBrainz.n3", "", "N3");

model.read("MusicMoz.n3", "", "N3");

model.read("EVDB.n3", "", "N3");

Now that we have configure both the RDF storage and
the reasoner we can load all ontologies

Note that the read method of model requires:
The name of the file to load,
The base URI (in our case all URI are absolute) and
The RDF syntax in which data are serialized

53

X-1

54

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1
Testing the integrated model

A simple test, which we can perform to verify the
semantic soundness of all the ontologies we modelled,
consists in loading in the model the example we
produced (in step D.3) and extracting the entire content
of the RDF storage in a single file using the write
method

model.write("Dump.n3","N3");

If we open the file Dump.n3 we can verify the presence
of all the inferred triple we presented in slide 11

55

X-1

56

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1
Choose content annotation methods

Following the proposed approach, next step (i.e. I.3)
suggests to choose content annotation methods

The contents we choose for meex are already annotated
at data source level, we (only) need to lift the data from
XML or relational database as instances of the content
ontology

In the following slide we show how to implement and
configure all the component necessary to allow meex to
load data from the external data sources

57

X-1
meex interfaces (1)

58

MusicBrainz
database

Adapter
Database

RDF

SPARQL
Server

EVDB
REST
service

MusicMoz
File XML

meex

User

XML

Browser
Web 3) HTML and RDF

2) RDF

GRDDL processor

EVDB
RDF

MusicMoz
RDF

XML

2) RDF

1) Music style

X-1
Importing annotations from MusicBrainz

The annotations of MusicBrainz are stored as dump of
PostgreSQL database

So, first of all we install the relational database
PostgreSQL

necessary documentation is available on PostgreSQL
and MusicBrainz official websites

When the database is available we need to install and
configure
1. a translator from relational database to RDF
2. a SPARQL endpoint

We choose D2RQ as translator and Joseki as SPARQL
server

59

X-1
Configuring D2RQ for MusicBrainz (1)

@prefix map: <http://swa.cefriel.it/meex/D2RQ-MusicBrainz.n3#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>.
@prefix mb: <http://musicbrainz.org/> .

map:database a d2rq:Database;
d2rq:jdbcDriver "org.postgresql.Driver";
d2rq:jdbcDSN "jdbc:postgresql://localhost:5432/MusicBrainzDB";
d2rq:username "postgres";
d2rq:password "sw-book".

[more to follow]

60

D2RQ-MusicBrainzDB.n3

artist artist_relation

id gid

artist
ref

X-1
Configuring D2RQ for MusicBrainz (1)

[follows]

map:artist a d2rq:ClassMap;
d2rq:dataStorage map:database;
d2rq:class mb:Artist;
d2rq:uriPattern "http://musicbrainz.org/artist/@@artist.gid@@.html";

map:artist_name a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:artist;
d2rq:property rdfs:label;
d2rq:column "artist.name".

map:artist_relation a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:artist;
d2rq:property mb:artist_relation;
d2rq:join "artist.id = artist_relation.artist“;
d2rq:join "artist_relation.ref = artist2.id";
d2rq:uriPattern "http://musicbrainz.org/artist/@@artist2.gid@@.html".

61

D2RQ-MusicBrainzDB.n3

artist artist_relation

id gid

artist
ref

X-1
Configuring Joseky for MusicBrainz

1. [] rdf:type joseki:Service ;
rdfs:label "SPARQL for MusicBrainzDB" ;
joseki:serviceRef "MusicBrainz" ;
joseki:dataset _:MusicBrainzDS ;
joseki:processor joseki:ProcessorSPARQL_FixedDS .

2. _:MusicBrainzDS rdf:type ja:RDFDataset ;
ja:defaultGraph _:MusicBrainzModel ;
rdfs:label "MusicBrainz Dataset" .

3. _:MusicBrainzModel rdf:type d2rq:D2RQModel ;
rdfs:label "MusicBrainz D2RQ Model" ;
d2rq:mappingFile <file:D2RQ-MusicBrainzDB.n3> ;
d2rq:resourceBaseURI <http://musicbrainz.org/> .

62

joseki-config.ttl
With row 1 we expose a SPARQL endpoint giving the name of
the service and the URL at which it will become accessible
http://localhost:2020/MusicBrainz

With row 2 and 3 we configure the SPARQL endpoint to expose
MusicBrainz via D2RQ using the configuration file
D2RQ-MusicBrainzDB.n3 (see previous slide)

X-1
Testing the SPARQL endpoint

63

1. String sparqlQueryString = "PREFIX mb: <http://musicbrainz.org/>\n“
+ "DESCRIBE <" + artist + ">";

2. Query query = QueryFactory.create(sparqlQueryString);

3. QueryExecution qexec = QueryExecutionFactory.sparqlService
("http://localhost:2020/MusicBrainz", query);

4. Model resultModel = qexec.execDescribe()

We choose ARQ to test the MusicBrainz SPARQL endpoint
submitting a DESCRIBE SPARQL query to obtain the description
of an artist
With row 1 we define the SPARQL query in which the variable
artist contains the URI of the artist we want to be described

With row 2 and 3 we instantiate a query model and we
configure the QueryExecution to send the query to the
endpoint at the URL http://localhost:2020/MusicBrainz
With row 4 we execute the query and we obtain a Jena model
as a result

X-1
meex interfaces (2)

64

MusicBrainz
database

Adapter
Database

RDF

SPARQL
Server

EVDB
REST
service

MusicMoz
File XML

meex

User

XML

Browser
Web 3) HTML and RDF

2) RDF

GRDDL processor

EVDB
RDF

MusicMoz
RDF

XML

2) RDF

1) Music style

X-1
Importing annotations from MusicMoz and EVDB

The MasicBrainz SPARQL endpoint is ready, let’s
imporing annotations from MusicMoz and EVDB. They
both exchange data in XML.

In the design steps we chose to use a GRDDL processor
to convert from XML in RDF (in the RDF/XML syntax)

The GRDDL recommendation requires the XML
documents to directly refer to the XSLT that performs
the translation.

Neither MusicMoz nor EVDB XML files originally
include the reference request by GRDDL
We can programmatically add it

In the following slide we show an excerpt of the
modified XML files for MusicMoz

We can proceed likewise for EVDB

65

X-1
Importing annotations from MusicMoz (1)

<musicmoz
xmlns:grddl='http://www.w3.org/2003/g/data-view#‘
grddl:transformation="file:///[...]/musicmoz-to-rdf.xsl">

<category name="Bands_and_Artists/B/Beatles,_The“
type="band">

<resource name="musicbrainz"
link="http://musicbrainz.org/artist/

b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d.html"/>

<from>England</from>
<style number="1">British Invasion</style>
<style number="2">Rock</style>
<style number="3">Skiffle</style>
</category>

<style><name>British Invasion</name></style>
<style><name>Rock</name></style>
<style><name>Skiffle</name></style>
</musicmoz>

66

Excerpts from the files musicmoz.bandsandartists.xml and musicmoz.lists.styles.xml

X-1
Importing annotations from MusicMoz (2)

<xsl:template match="musicmoz/category[(@type='band' or
@type='artist‘) and resource/@name='musicbrainz']">

<xsl:variable name="artist_uri“
select="resource[@name='musicbrainz']/@link"/>

<xsl:for-each select="style">
<xsl:variable name="style_reformatted“

select="concat('http://musicmoz.org/style/',text())"/>
<rdf:Description rdf:about="{$artist_uri}">
<mm:hasStyle rdf:resource="{$style_reformatted}"/>

</rdf:Description>
</xsl:for-each>
<rdf:Description rdf:about="{$artist_uri}">
<mm:from><xsl:value-of select="from"/></mm:from>

</rdf:Description>
</xsl:template>
<xsl:template match="musicmoz/style">
<xsl:variable name="style_reformatted"

select="concat('http://musicmoz.org/style/', name)"/>
<mm:Style rdf:about="{$style_reformatted}">
<rdfs:label><xsl:value-of select="name"/></rdfs:label>

</mm:Style>
</xsl:template>

67

Excerpts from the file musicmoz-to-rdf.xsl

X-1
Importing annotations from MusicMoz (3)

As GRDDL processor we choose GRDDL Reader, the GRDDL
processor for Jena.

With row 1 we instantiate a Jena model that will momentarily
contain the RDF data produce by the GRDDL processor
With row 2 we instantiate a RDFReader that uses a GRDDL
processor to load RDF data
With row 3 and 4 we load in the RDF model instantiate in row
1 the data contained in the XML files of MusicMoz using the
RDF reader configured for GRDDL
With row 5 we merge the loaded RDF data with those already
present in the RDF storage

68

1. Model mmModel = ModelFactory.createDefaultModel();

2. RDFReader reader = mmModel.getReader("GRDDL");

3. reader.read(mmModel, "file:///.../musicmoz.bandsandartists.xml");

4. reader.read(mmModel, "file:///.../musicmoz.lists.styles.xml");

5. model.add(mmModel);

X-1
So far so good! (1)

69

MusicBrainz
database

Adapter
Database

RDF

SPARQL
Server

EVDB
REST
service

MusicMoz
File XML

meex

User

XML

Browser
Web 3) HTML and RDF

2) RDF

GRDDL processor

EVDB
RDF

MusicMoz
RDF

XML

2) RDF

1) Music style

X-1
So far so good! (2)

70

Ajax Web Framework

GRDDL Processor

For each Artist

SPARQL Client

MusicBrainz
SPARQL Endpoint

HTTP REST Client

EVDB
HTTP REST service

GRDDL Processor
EVDB

RDF

MusicMoz
RDF

Linking Artists to events

RDF Merge

Estrazione e
trasformazione

Ajax Web Framework

Music style

Set of artist in RDF

Artist

SPARQL Query

Events in XML

Events in RDF

Artists and events in RDF

Artist data
in RDF

HTTP Query

Dati RDF

Artists and
events in RDF

X-1

71

D
.1

M
od

el
 th

e
ap

pl
ic

at
io

n
on

to
lo

gy

D
.2

M
od

el
 th

e
co

nt
en

t
on

to
lo

gy

R.1 Users’ needs analysis

R.3 Software
requirements analysis

R.4 Content
requirements analysis

D.3 Model
sample

contents

Reuse

Merge

Extend

I.1 Implement the
initial Knowledge Base

V.
1

Va
lid

at
io

n

I.3 Choose content
annotation methods

I.2 Implement the
integrated model

Reuse

Merge

Extend

I.4 Implement the
application

R.2 Risk analysis

D.4 Design Application

T.1 Testing

X-1
What’s left?

All the business logic that coordinates the interaction
among the internal component is still to be implemented

NOTE: implementing the business logic requires
both writing many lines of pure Java code
and work with several Semantic Web technologies

we will focus our attention to the Semantic Web
technologies

The complete Java code is available on the website of
our Semantic Web book for downloading.

72

X-1
What’s left?

73

Ajax Web Framework

GRDDL Processor

For each Artist

SPARQL Client

MusicBrainz
SPARQL Endpoint

HTTP REST Client

EVDB
HTTP REST service

GRDDL Processor
EVDB

RDF

MusicMoz
RDF

Linking Artists to events

RDF Merge

Estrazione e
trasformazione

Ajax Web Framework

Music style

Set of artist in RDF

Artist

SPARQL Query

Events in XML

Events in RDF

Artists and events in RDF

Artist data
in RDF

HTTP Query

Dati RDF

Artists and
events in RDF

X-1
MEMO: Execution Semantics (1)

1. The user requests a music style

2. meex access the local copy of MusicMoz and using the
GRDDL processors obtains a set of artist that plays the
given music style

[more to follow]

74

X-1
Step 2: from the music style to the artists

The step 2. of meex execution semantics requires to
query MusicMoz for the artist that plays the music style
requested by the users

The following Java code shows how to encode the
SPARQL query in terms of the application ontology

75

String sparqlQueryString =

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n"

+ "PREFIX meex: <http://swa.cefriel.it/meex#>\n"

+ "SELECT DISTINCT ?performer \n"

+ "WHERE { ?performer meex:performsStyle ?style.\n"

+ " ?style rdfs:label \"" + style + "\".}";

X-1
MEMO: Execution Semantics (2)

[follows]

3. For each artist meex :
a) uses the SPARQL client to query the MusicBrainz

SPARQL endpoint and it obtains the artist name and
his/her relationships with other artist

b) invokes the EVDB REST service, it obtains the events
that refer to the artist in XML and uses the GRDDL
processor to obtain this data in RDF

c) links the data about each artist to the data about the
events that refers to him/her

[more to follow]

76

X-1
Step 3.a: querying MusicBrainz

The step 3.a of meex execution semantics requires to
query MusicBrainz for the data that describe an artist
including the related artists

77

String sparqlQueryString =
"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n”

+ "PREFIX mb: <http://musicbrainz.org/>\n”
+ "DESCRIBE <"+ artist + ">";

SPARQLClient sparqlClient = new SPARQLClient(null);

try {

return sparqlClient.executeDescribeQuery(sparqlQueryString,
Config.MusicBrainzSPARQLEndpoint);

} finally {

sparqlClient.closeQuery();

}

Excerpts from the file MusicBrainz.java

X-1
Step 3.b: querying EVDB

The step 3.b of meex execution semantics requires to
invoke the EVDB REST service, obtain the list of events
in XML and use the GRDDL processor to obtain the RDF

78

invokeHttpEndpoint(performerLabel, eventsFilename);
prepareForGRDDL(eventsFilename);
Model m = GRDDLProcessor.ApplyGRDDLTransformation(eventsFilename);
private static void invokeHttpEndpoint(String keywords,

String outputFilename) throws IOException {
URL url = new URL(

"http://api.evdb.com/rest/events/atom?sort_order=relevance&"
+ "keywords=" + URLEncoder.encode(keywords, "UTF-8")
+ "&category=music&app_key="+Config.EVDBKey);

URLConnection conn = url.openConnection();
conn.setDoOutput(true);
BufferedReader in = new BufferedReader(new InputStreamReader(

conn.getInputStream()));
[…]
while ((inLine = in.readLine()) != null)

writer.write(inLine + "\n");
}

Excerpts from the file EVDB.java

X-1
Step 3.c: linking artists to events

The step 3.c of meex execution semantics requires to
link the artist information retrieved from MusicMoz and
MusicBrainz to the event information retrieved from
EVDB

We can use the following SPARQL CONSTRUCT query to
create the links

79

String sparqlQueryString =

"PREFIX meex: <http://swa.cefriel.it/meex#>\n"

+ "CONSTRUCT {<" + performer + "> meex:performsEvent ?event.}\n“

+ "WHERE {?event a meex:Event.}";

X-1
MEMO: Execution Semantics (3)

[follows]

4. When all the peaces of information about artists and
events are available in the RDF storage, meex extracts
them and serializes them in the format of the Ajax Web
framework

5. The ajax Web framework allows the user for exploring
the events found by meex

6. When the user decides to start a new exploration, meex
starts over from the beginning

80

X-1
Step 4: preparing the data for the GUI

We choose Exhibit as Ajax Web framework because
allows facet browsing
allows grouping and filtering events by

artist name
artist nationality
the style the artist plays
the related artists

includes different views
an ordered list
a chronological graph
a geographic map

81

X-1
Step 4: configuring Exhibit

We can configure Exhibit by the means of two files:
an HTML page that controls the look and feel and
a JSON file that contains the data to be explored by
the user

In this tutorial we focus on the preparation of the JSON
file. We refer to Exhibit documentation and the website
of our Semantic Web book for the preparation of the
HTML page of Exhibit for meex

A JSON file is a simple text file that contains data
organized in set of recors. In the following slide we show
the information of The Beatles expressed in JSON.

82

X-1
Step 4: a sample JSON file

83

1. type: "Event",

2. label: "1964 The Tribute Tribute to Beatles",

3. eventful_link: "http://eventful.com/events/
E0-001-006129372-

5",

4. when_startTime: "2008-01-25",

5. when_endTime: "2008-01-26",

6. where_label: "Paramount Theater",

7. where_address: "17 South Street, New York 10940,
United

States",

8. where_latlng: "41.4544,-74.471",

9. performer_label: "The Beatles",

10.fromCountry: "England",

11.styles: ["Skiffle", "British Invasion", "Rock"],

12.relatedPerformers:["The Beach Boys", "Eric Clapton"]

X-1
Step 4: serializing RDF in JSON

In order to serialize RDF in JSON
we extract the information we loaded in the RDF
storage using the SPARQL query shown in the
following slide
we serialize the result in JSON

NOTE: as we’ve already said several time, the query can
be expressed in terms of the application ontology even if
the data were loaded in other heterogeneous formats

84

X-1
Step 4: extracting the data

85

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX meex: <http://swa.cefriel.it/meex#>
PREFIX gd: <http://schemas.google.com/g/2005>
SELECT DISTINCT ?event ?event_label ?when_startTime

?when_endTime ?where_label ?where_address ?where_lat
?where_lon ?performer ?performer_label ?fromCountry

WHERE {
?event rdfs:label ?event_label;

meex:hasWhen ?when;
meex:hasWhere ?where.

?when gd:startTime ?when_startTime;
gd:endTime ?when_endTime.

?where gd:label ?where_label;
gd:postalAddress ?where_address;
gd:hasGeoPt ?geoPt.

?geoPt gd:lat ?where_lat;
gd:lon ?where_lon.

?performer meex:performsEvent ?event;
rdfs:label ?performer_label;
meex:fromCountry ?fromCountry.}

X-1
Step 5 and 6

86

X-1
Step 5 and 6

87

X-1
Tools employed (1)

Jena
Application Framework
http://jena.sourceforge.net

Derby
Relational database for the RDF storage
http://db.apache.org/derby

PostgreSQL
Relational database for MusicBrainz
http://www.postgresql.org

D2RQ
Translator from relational database to RDF
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq

88

X-1
Tools employed (2)

Joseki
SPARQL Endpoint Server
http://www.joseki.org

ARQ
SPARQL query engine for Jena
http://jena.sourceforge.net/ARQ

GRDDL Reader
GRDDL processor
http://jena.sourceforge.net/grddl

Exhibit
Ajax Web Framework
http://static.simile.mit.edu/exhibit

89

X-1
Thank you for paying attention

Any Question?

Semantic Web
modellare e condividere per innovare
E. Della Valle, I. Celino e D. Cerizza

Realizing a
Semantic Web Application

Emanuele Della Valle

http://www.cefriel.it
http://swa.cefriel.it

emanuele.dellavalle@cefriel.it
http://emanueledellavalle.org

11th Int. Conf. on Business Information Systems BIS 2008
Innsbruck, Austria, 7 May 2008

Center of Excellence For Research, Innovation, Education and
industrial Lab partnership - Politecnico di Milano

X-1
Credits and Links

CREDITS
Dario Cerizza [dario.cerizza@cefriel.it]

who help in concieving, designed and developed
meex

Irene Celino [irene.celino@cefriel.it]
who help in concieving and support the design and
development of meex

All the people involved in CEFRIEL’s Semantic Web
Activities

Links
Visit http://swa.cefriel.it
Try http://swa.cefriel.it/Squiggle
Try http://swa.cefriel.it/SOIP-F

92

